Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 363-368, 2018.
Article in English | WPRIM | ID: wpr-727583

ABSTRACT

Hypotension is one of the potential causes of dizziness. In this review, we summarize the studies published in recent years about the electrophysiological and pharmacological mechanisms of hypotension-induced dizziness and the role of the vestibular system in the control of blood pressure in response to hypotension. It is postulated that ischemic excitation of the peripheral vestibular hair cells as a result of a reduction in blood flow to the inner ear following hypotension leads to excitation of the central vestibular nuclei, which in turn may produce dizziness after hypotension. In addition, excitation of the vestibular nuclei following hypotension elicits the vestibulosympathetic reflex, and the reflex then regulates blood pressure by a dual-control (neurogenic and humoral control) mechanism. In fact, recent studies have shown that peripheral vestibular receptors play a role in the control of blood pressure through neural reflex pathways. This review illustrates the dual-control mechanism of peripheral vestibular receptors in the regulation of blood pressure following hypotension.


Subject(s)
Blood Pressure , Dizziness , Ear, Inner , Epinephrine , Glutamic Acid , Hair Cells, Vestibular , Hypotension , Reflex , Vestibular Nuclei
2.
Journal of the Korean Balance Society ; : 142-151, 2018.
Article in Korean | WPRIM | ID: wpr-761283

ABSTRACT

OBJECTIVES: Excitability o medial vestibular nucleus (MVN) in the brainstem can be affected by changes in the arterial blood pressure. Several animal studies have demonstrated that acute hypotension results in the alteration of multiunit activities and expression of cFos protein in the MVN. In the field of extracellular electrophysiological recording, tetrode technology and spike sorting algorithms can easily identify single unit activity from multiunit activities in the brain. However, detailed properties of electrophysiological changes in single unit of the MVN during acute hypotension have been unknown. METHODS: Therefore, we applied tetrode techniques and electrophysiological characterization methods to know the effect of acute hypotension on single unit activities of the MVN of rats. RESULTS: Two or 3 types of unit could be classified according to the morphology of spikes and firing properties of neurons. Acute hypotension elicited 4 types of changes in spontaneous firing of single unit in the MVN. Most of these neurons showed excitatory responses for about within 1 minute after the induction of acute hypotension and then returned to the baseline activity 10 minutes after the injection of sodium nitroprusside. There was also gradual increase in spontaneous firing in some units. In contrast small proportion of units showed rapid reduction of firing rate just after acute hypotension. CONCLUSIONS: Therefore, application of tetrode technology and spike sorting algorithms is another method for the monitoring of electrical activity of vestibular nuclear during acute hypotension.


Subject(s)
Animals , Rats , Arterial Pressure , Brain , Brain Stem , Fires , Hypotension , Methods , Neurons , Nitroprusside , Vestibular Nuclei
3.
The Korean Journal of Physiology and Pharmacology ; : 371-376, 2017.
Article in English | WPRIM | ID: wpr-727979

ABSTRACT

The caudal subnucleus of the spinal trigeminal nucleus (medullary dorsal horn; MDH) receives direct inputs from small diameter primary afferent fibers that predominantly transmit nociceptive information in the orofacial region. Recent studies indicate that reactive oxygen species (ROS) is involved in persistent pain, primarily through spinal mechanisms. In this study, we aimed to investigate the role of xanthine/xanthine oxidase (X/XO) system, a known generator of superoxide anion (O₂(·−)), on membrane excitability in the rat MDH neurons. For this, we used patch clamp recording and confocal imaging. An application of X/XO (300 µM/30 mU) induced membrane depolarization and inward currents. When slices were pretreated with ROS scavengers, such as phenyl N-tert-butylnitrone (PBN), superoxide dismutase (SOD), and catalase, X/XO-induced responses decreased. Fluorescence intensity in the DCF-DA and DHE-loaded MDH cells increased on the application of X/XO. An anion channel blocker, 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), significantly decreased X/XO-induced depolarization. X/XO elicited an inward current associated with a linear current-voltage relationship that reversed near −40 mV. X/XO-induced depolarization reduced in the presence of La³⁺, a nonselective cation channel (NSCC) blocker, and by lowering the external sodium concentration, indicating that membrane depolarization and inward current are induced by influx of Na⁺ ions. In conclusion, X/XO-induced ROS modulate the membrane excitability of MDH neurons, which was related to the activation of NSCC.


Subject(s)
Animals , Rats , Catalase , Facial Pain , Fluorescence , Ions , Membranes , Neurons , Oxidoreductases , Posterior Horn Cells , Reactive Oxygen Species , Sodium , Spinal Cord Dorsal Horn , Superoxide Dismutase , Superoxides , Trigeminal Nucleus, Spinal , Xanthine Oxidase
4.
The Korean Journal of Physiology and Pharmacology ; : 675-686, 2017.
Article in English | WPRIM | ID: wpr-727946

ABSTRACT

Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH. In order to understand the pathophysiology of OH, we investigated the physiological characteristics of the VSR in the disorder. We applied sodium nitroprusside (SNP) to conscious rats with sinoaortic denervation in order to induce hypotension. Expression of pERK in the intermediolateral cell column (IMC) of the T4~7 thoracic spinal regions, blood epinephrine levels, and blood pressure were evaluated following the administration of glutamate and/or SNP. SNP-induced hypotension led to increased pERK expression in the medial vestibular nucleus (MVN), rostral ventrolateral medullary nucleus (RVLM) and the IMC, as well as increased blood epinephrine levels. We co-administered either a glutamate receptor agonist or a glutamate receptor antagonist to the MVN or the RVLM. The administration of the glutamate receptor agonists, AMPA or NMDA, to the MVN or RVLM led to elevated blood pressure, increased pERK expression in the IMC, and increased blood epinephrine levels. Administration of the glutamate receptor antagonists, CNQX or MK801, to the MVN or RVLM attenuated the increased pERK expression and blood epinephrine levels caused by SNP-induced hypotension. These results suggest that two components of the pathway which maintains blood pressure are involved in the VSR induced by SNP. These are the neurogenic control of blood pressure via the RVLM and the humoral control of blood pressure via epinephrine release from the adrenal medulla.


Subject(s)
Animals , Rats , 6-Cyano-7-nitroquinoxaline-2,3-dione , Adrenal Medulla , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Blood Pressure , Denervation , Dizocilpine Maleate , Dizziness , Epinephrine , Excitatory Amino Acid Antagonists , Glutamic Acid , Headache , Hypotension , Hypotension, Orthostatic , Incidence , N-Methylaspartate , Nitroprusside , Receptors, Glutamate , Reflex , Spinal Cord Lateral Horn , Syncope , Vestibular Nuclei
5.
Journal of the Korean Balance Society ; : 101-107, 2017.
Article in Korean | WPRIM | ID: wpr-761258

ABSTRACT

The autonomic nervous system (ANS) integrates the function of the internal organs for the homeostasis against various external environmental changes. The efferent components of the ANS are regulated by sensory signals arising from the viscera as well as non-visceral organs. The central neural networks that integrate these sensory signals and modify visceral motor output are complex, and synaptic reflexes formed in the brainstem and spinal cord integrate behavioral responses and visceral responses through the central neural networks. A detailed understanding of the neural network presented above may explain the role of the vestibular system on the homeostasis more extensively.


Subject(s)
Autonomic Nervous System , Brain Stem , Homeostasis , Physiology , Reflex , Solitary Nucleus , Spinal Cord , Spinal Cord Lateral Horn , Viscera
6.
The Korean Journal of Physiology and Pharmacology ; : 427-434, 2015.
Article in English | WPRIM | ID: wpr-727354

ABSTRACT

Significant evidence supports the role of the vestibular system in the regulation of blood pressure during postural movements. In the present study, the role of the vestibulo-spino-adrenal (VSA) axis in the modulation of blood pressure via the vestibulosympathetic reflex was clarified by immunohistochemical and enzyme immunoassay methods in conscious rats with sinoaortic denervation. Expression of c-Fos protein in the intermediolateral cell column of the middle thoracic spinal regions and blood epinephrine levels were investigated, following microinjection of glutamate receptor agonists or antagonists into the medial vestibular nucleus (MVN) and/or sodium nitroprusside (SNP)-induced hypotension. Both microinjection of glutamate receptor agonists (NMDA and AMPA) into the MVN or rostral ventrolateral medullary nucleus (RVLM) and SNP-induced hypotension led to increased number of c-Fos positive neurons in the intermediolateral cell column of the middle thoracic spinal regions and increased blood epinephrine levels. Pretreatment with microinjection of glutamate receptor antagonists (MK-801 and CNQX) into the MVN or RVLM prevented the increased number of c-Fos positive neurons resulting from SNP-induced hypotension, and reversed the increased blood epinephrine levels. These results indicate that the VSA axis may be a key component of the pathway used by the vestibulosympathetic reflex to maintain blood pressure during postural movements.


Subject(s)
Animals , Rats , Axis, Cervical Vertebra , Blood Pressure , Denervation , Epinephrine , Excitatory Amino Acid Antagonists , Glutamic Acid , Hypotension , Immunoenzyme Techniques , Microinjections , Neurons , Nitroprusside , Receptors, Glutamate , Reflex , Vestibular Nuclei , Natural Resources
7.
Journal of the Korean Balance Society ; : 75-82, 2015.
Article in Korean | WPRIM | ID: wpr-761189

ABSTRACT

OBJECTIVE: The cerebral cortex can modulate vestibular functions through direct control of neuronal activities in the vestibular nuclei. The purpose of this study was to investigate the effect of unilateral cortical lesion or cortical stimulation on static vestibular symptoms and vestibular nuclear activities at the acute stage of vestibular compensation following unilateral labyrinthectomy (UL) in rats. METHODS: The photothrombic ischemic injury using rose bengal was induced in the primary motor cortex or primary sensory cortex, and electrical stimulation was applied to the primary motor cortex, primary sensory cortex, or sencondary sensory cortex, respectively, in unilateral labyrinthectomized rats. Static vestibular symptoms including ocular movement and postural deficits, and expression of c-Fos protein in the medial vestibular nucleus (MVN) were measured. RESULTS: Lesion of the motor cortex produced a marked postural deficit with paralytic weakness in the hindlimb contralateral to UL. Number of spontaneous nystagmus in animals receiving cortical lesion was significantly increased 2, 6, and 12 hours after UL compared with animals being UL only. Lesion of the primary motor cortex or stimulation of the S2 sensory cortex decreased expression of c-Fos protein in MVN following UL compared with UL only group. Electrical stimulation of S2 sensory areas caused significant reduction of static vestibular symptoms and decreased expression of c-Fos protein in MVN 24 hours following UL. CONCLUSION: The present results suggest that cerebral cortex involves in recovery of static vestibular symptoms during vestibular compensation following UL.


Subject(s)
Animals , Rats , Cerebral Cortex , Compensation and Redress , Electric Stimulation , Hindlimb , Motor Cortex , Neurons , Rose Bengal , Vestibular Nuclei
8.
The Korean Journal of Physiology and Pharmacology ; : 159-165, 2015.
Article in English | WPRIM | ID: wpr-728529

ABSTRACT

Input signals originating from baroreceptors and vestibular receptors are integrated in the rostral ventrolateral medulla (RVLM) to maintain blood pressure during postural movement. The contribution of baroreceptors and vestibular receptors in the maintenance of blood pressure following hypotension were quantitatively analyzed by measuring phosphorylated extracellular regulated protein kinase (pERK) expression and glutamate release in the RVLM. The expression of pERK and glutamate release in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD) following hypotension induced by a sodium nitroprusside (SNP) infusion. The expression of pERK was significantly increased in the RVLM in the control group following SNP infusion, and expression peaked 10 min after SNP infusion. The number of pERK positive neurons increased following SNP infusion in BL, SAD, and BL+SAD groups, although the increase was smaller than seen in the control group. The SAD group showed a relatively higher reduction in pERK expression when compared with the BL group. The level of glutamate release was significantly increased in the RVLM in control, BL, SAD groups following SNP infusion, and this peaked 10 min after SNP infusion. The SAD group showed a relatively higher reduction in glutamate release when compared with the BL group. These results suggest that the baroreceptors are more powerful in pERK expression and glutamate release in the RVLM following hypotension than the vestibular receptors, but the vestibular receptors still have an important role in the RVLM.


Subject(s)
Animals , Rats , Blood Pressure , Denervation , Glutamic Acid , Hypotension , Neurons , Nitroprusside , Pressoreceptors , Protein Kinases
9.
The Korean Journal of Physiology and Pharmacology ; : 275-281, 2015.
Article in English | WPRIM | ID: wpr-728513

ABSTRACT

Orthostatic hypotension is most common in elderly people, and its prevalence increases with age. Attenuation of the vestibulo-sympathetic reflex (VSR) is commonly associated with orthostatic hypotension. In this study, we investigated the role of glutamate on the vestibulo-solitary projection of the VSR pathway to clarify the pathophysiology of orthostatic hypotension. Blood pressure and expression of both pERK and c-Fos protein were evaluated in the nucleus tractus solitarius (NTS) after microinjection of glutamate into the medial vestibular nucleus (MVN) in conscious rats with sodium nitroprusside (SNP)-induced hypotension that received baroreceptor unloading via sinoaortic denervation (SAD). SNP-induced hypotension increased the expression of both pERK and c-Fos protein in the NTS, which was abolished by pretreatment with glutamate receptor antagonists (MK801 or CNQX) in the MVN. Microinjection of glutamate receptor agonists (NMDA or AMPA) into the MVN increased the expression of both pERK and c-Fos protein in the NTS without causing changes in blood pressure. These results indicate that both NMDA and AMPA receptors play a significant role in the vestibulo-solitary projection of the VSR pathway for maintaining blood pressure, and that glutamatergic transmission in this projection might play a key role in the pathophysiology of orthostatic hypotension.


Subject(s)
Aged , Animals , Humans , Rats , Blood Pressure , Denervation , Excitatory Amino Acid Antagonists , Glutamic Acid , Hypotension , Hypotension, Orthostatic , Microinjections , N-Methylaspartate , Nitroprusside , Pressoreceptors , Prevalence , Receptors, AMPA , Receptors, Glutamate , Reflex , Sodium , Solitary Nucleus , Vestibular Nuclei
10.
Journal of the Korean Balance Society ; : 110-116, 2015.
Article in Korean | WPRIM | ID: wpr-761199

ABSTRACT

OBJECTIVE: The vestibular system contributes control of blood pressure during postural changes through the vestibulosympathetic reflex. In the vestibulosympathetic reflex, afferent signals from the peripheral vestibular receptors are transmitted to the vestibular nuclei, rostral ventrolateral medullary nuclei, and then to the intermediolateral cell column of the thoracolumbar spinal cord. Physiological characteristics of the vestibulosympathetic reflex in terms of neurogenic and humoral control of blood pressure were investigated in this study. METHODS: Conscious rats with sinoaortic denervation were used for removal of baroreceptors in reflex control of blood pressure, and hypotension was induced by intravenous infusion of sodium nitroprusside (SNP). Expression of c-Fos protein was measured in the medial vestibular nuclei (MVN), rostral vestrolateral medullary nuclei(RVLM), and intermediolateral cell column (IMC) in T4-7, and levels of blood epinephrine were measured following SNP-induced hypotension. RESULTS: SNP-induced hypotension significantly increased expression of c-Fos protein in the MVN, RVLM, and IMC, also significantly increased level of blood epinephrine compared to normotensive control animals. CONCLUSION: These results suggest that the vestibulosympathetic reflex regulates blood pressure through neurogenic control including MVN, RVLM, and IMC, also through humoral control including epinephrine secretion by the adrenal medulla following SNP-induced hypotension. The physiological characteristics of the reflex may contribute to basic treatment of impairment of blood pressure control during postural changes.


Subject(s)
Animals , Rats , Adrenal Medulla , Blood Pressure , Denervation , Epinephrine , Hypotension , Infusions, Intravenous , Nitroprusside , Pressoreceptors , Reflex , Spinal Cord , Vestibular Nuclei
11.
The Korean Journal of Physiology and Pharmacology ; : 353-358, 2014.
Article in English | WPRIM | ID: wpr-728457

ABSTRACT

Control of blood pressure is maintained by the interaction between the arterial baroreflex and vestibulosympathetic reflex during postural changes. In this study, the contributions of vestibular receptors and baroreceptors to the maintenance of blood pressure following acute hypotension were compared in terms of phosphorylated extracellular regulated protein kinase (pERK) expression in the nucleus tractus solitaries (NTS). Expression of pERK in the NTS was measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD) 5, 10, 20, and 40 min following acute hypotension induced by sodium nitroprusside (SNP) infusion. Expression of pERK increased significantly in the NTS in the control group following SNP infusion, and the expression peaked at 10 min after SNP infusion. The number of pERK positive neurons increased following SNP infusion in BL, SAD, and BL+SAD groups, although the increase was smaller than in control group. The BL group showed a relatively higher reduction in pERK expression than the SAD group, and the pERK expression in the NTS was localized to the caudal portion of the nuclei in the BL and SAD groups. These results suggest that the vestibular receptors may play a key role in maintaining blood pressure following acute hypotension; thus, the vestibular system may contribute to compensate for orthostatic hypotension.


Subject(s)
Animals , Rats , Baroreflex , Blood Pressure , Denervation , Hypotension , Hypotension, Orthostatic , Neurons , Nitroprusside , Pressoreceptors , Protein Kinases , Reflex , Solitary Nucleus
12.
The Korean Journal of Physiology and Pharmacology ; : 367-373, 2013.
Article in English | WPRIM | ID: wpr-727508

ABSTRACT

Contribution of the vestibular end organ to regulation of arterial pressure was quantitatively compared with the role of baroreceptors in terms of baroreflex sensitivity and c-Fos protein expression in the rostral ventrolateral medulla (RVLM). Baroreflex sensitivity and c-Fos protein expression in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or baroreceptor unloading. BL attenuated baroreflex sensitivity during intravenous infusion of sodium nitroprusside (SNP), but did not significantly affect the sensitivity following infusion of phenylephrine (PE). Baroreflex sensitivity became positive following sinoaortic denervation (SAD) during infusion of PE and attenuated sensitivity during infusion of SNP. Baroreflex sensitivity also became positive following double ablation (BL+SAD) during infusion of PE, and attenuated sensitivity during infusion of SNP. c-Fos protein expression increased significantly in the RVLM in the sham group after SNP administration. However, the BL, SAD, and SAD+BL groups showed significant decreases in c-Fos protein expression compared with that in the sham group. The SAD group showed more reduced c-Fos protein expression than that in the BL group, and the SAD+BL group showed less expression than that in the SAD group. These results suggest that the vestibular system cooperates with baroreceptors to maintain arterial pressure during hypotension but that baroreceptors regulate arterial pressure during both hypotension and hypertension. Additionally, afferent signals for maintaining blood pressure from the vestibular end organs and the baroreceptors may be integrated in the RVLM.


Subject(s)
Animals , Rats , Arterial Pressure , Baroreflex , Blood Pressure , Denervation , Hypertension , Hypotension , Infusions, Intravenous , Nitroprusside , Phenylephrine , Pressoreceptors , Salicylamides
13.
Journal of the Korean Balance Society ; : 131-137, 2012.
Article in English | WPRIM | ID: wpr-761125

ABSTRACT

BACKGROUND AND OBJECTIVES: Acute hypotension induces expression of c-Fos protein and phosphorylated extracellular signal-regulated kinase (pERK), and glutamate release in the vestibular nuclei. Expression of c-Fos protein and pERK is mediated by the excitatory neurotransmitter, glutamate. In this study, the signaling pathway of glutamate in the vestibular nuclei following acute hypotension was investigated. MATERIALS AND METHODS: Expression of metabotropic glutamate receptors (mGluRs) was measured by Western blotting in the medial vestibular nucleus following acute hypotension in rats. RESULTS: Expression of pGluR1 Ser831, a subtype of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, peaked at 30 minutes after acute hypotension insult, and expression of pNR2B, a subtype of N-methyl-D-aspartate (NMDA) receptors, peaked at 2 hours after acute hypotension insult. Acute hypotension induced expression of Homer1a and group I mGluR in the medial vestibular nucleus. Expression of mGluR1 and mGluR5 peaked at 6 hours following acute hypotension insults. CONCLUSION: These results suggest that afferent signals from the peripheral vestibular receptors, resulting from acute hypotension insult, are transmitted through group I mGluRs as well as AMPA and NMDA receptors in the vestibular system.


Subject(s)
Animals , Rats , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Blotting, Western , Glutamic Acid , Hypotension , N-Methylaspartate , Neurotransmitter Agents , Phosphotransferases , Receptors, Metabotropic Glutamate , Receptors, N-Methyl-D-Aspartate , Vestibular Nuclei
14.
Journal of the Korean Balance Society ; : 51-58, 2012.
Article in English | WPRIM | ID: wpr-761115

ABSTRACT

BACKGROUND AND OBJECTIVES: The present study investigated the role of the peripheral vestibular end organ in vestibular symptoms and temporal changes in expression of c-Fos protein in the vestibular nuclei following anterior inferior cerebellar artery (AICA) occlusion using rats with unilateral or bilateral labyrinthectomy. MATERIALS AND METHODS: Expression of c-Fos protein in the vestibular nuclei was measured 2, 12, 24, and 48 hours after AICA occlusion. RESULTS: Unilateral AICA occlusion significantly induced expression of c-Fos protein bilaterally in the medial, inferior, superior, and lateral vestibular nuclei. Following AICA occlusion, the medial vestibular nucleus (MVN) showed the highest expression of c-Fos protein among the 4 vestibular nuclei. The expression of c-Fos protein was asymmetric between the bilateral MVN, showing higher expression in the MVN contralateral to the side of AICA occlusion compared to the ipsilateral MVN. The degree of asymmetry in c-Fos protein expression between the bilateral MVN peaked 12 hours after AICA occlusion. The expression of c-Fos protein gradually decreased 24 hours after AICA occlusion and returned to control levels 48 hours after AICA occlusion. Unilateral labyrinthectomy significantly decreased expression of c-Fos protein in the MVN ipsilateral to the side of labyrinthectomy following AICA occlusion. Moreover, bilateral labyrinthectomy significantly decreased expression of c-Fos protein in the bilateral MVN flowing AICA occlusion. CONCLUSION: These results suggest that afferent signals from the peripheral vestibular end organ are crucial to the expression of c-Fos protein in the MVN following AICA occlusion and that expression of c-Fos protein is sustained for 24 hours after AICA occlusion.


Subject(s)
Animals , Rats , Arteries , Vertebrobasilar Insufficiency , Vestibular Nuclei
15.
Journal of the Korean Balance Society ; : 92-99, 2011.
Article in Korean | WPRIM | ID: wpr-761094

ABSTRACT

BACKGROUND AND OBJECTIVES: Force sensitive resistors (FSR) were used to measure the body sway to galvanic vestibular stimulation (GVS), and compared with the response obtained from force platform in normal subjects. MATERIALS AND METHODS: Bipolar galvanic stimulation was applied to the bilateral mastoid process with intensity of 0.5-1.5 mA and duration of 1 sec in 3 different head positions of forward, rightward, and leftward. RESULTS: Elevation of anterior pressure curve and depression of posterior pressure curve resulting from forward body sway were recorded in both feet by FSR. Forward body sway induced forward deviation of the center of pressure in force platform. Elevation of pressure curve in left foot and depression of the curve in right foot resulting from leftward body sway were recorded by FSR. Leftward body sway induced left deviation of the center of pressure in force platform. Orientation of the body sway induced by GVS was directed towards the anode side in the head facing forwards. Leftward and backward body sway resulting from cathodal stimulation on left mastoid process in leftward rotation of the head position and leftward and forward body sway resulting from cathodal stimulation on left mastoid process in rightward rotation of the head position were recorded by both FSR and force platform. Reaction time of GVS did not show any significant difference between FSR and force platform. CONCLUSION: These results indicate that FSR could be used to evaluate the vestibulospinal reflex to GVS.


Subject(s)
Depression , Electrodes , Foot , Head , Mastoid , Orientation , Reaction Time , Reflex
16.
Journal of the Korean Balance Society ; : 84-84, 2010.
Article in Korean | WPRIM | ID: wpr-761057

ABSTRACT

No abstract available.

17.
Journal of the Korean Balance Society ; : 1-11, 2010.
Article in Korean | WPRIM | ID: wpr-761056

ABSTRACT

The vestibular end-organs generate very sophisticated gravity sensory information about head movement by sensing head acceleration in three-dimensional space. Vestibular information is crucial for higher brain functions such as cognition of spatial orientation, spatial memory, and perception of self-motion. The term "vestibular cortex" represents cortical area where vestibular information is processed, converged with other sensory inputs to maintain cortical functions. The vestibular cortex gives rise to commend signals that control the vestibulosomatic reflex through the modulation of vestibular nuclear activity in the brainstem. The vestibular cortex includes such different cortical regions as the premotor region of the frontal cortex, parietal areas, temporal areas, and a central core region called parietoinsular vestibular cortex. This paper summarizes systemically animal and clinical research data concerned with the vestibular cortex in order to understand anatomy and functions of the vestibular cortex and to provide a basic literature for further study.


Subject(s)
Animals , Acceleration , Brain , Brain Stem , Cognition , Gravitation , Head , Head Movements , Memory , Orientation , Reflex , Thalamic Nuclei
18.
The Korean Journal of Physiology and Pharmacology ; : 151-156, 2010.
Article in English | WPRIM | ID: wpr-727806

ABSTRACT

This study was performed to investigate the role of glutamate neurotransmitter system on gastrointestinal motility in a middle cerebral artery occlusion (MCAO) model of rats. The right middle cerebral artery was occluded by surgical operation, and intestinal transit and geometric center as a parameter of gastrointestinal motility and expression of c-Fos protein in the insular cortex and cingulate cortex were measured at 2 and 12 h after MCAO. Intestinal transit was 66.3+/-7.5% and 62.3+/-5.7% 2 and 12 h after sham operation, respectively, and MCAO significantly decreased intestinal transit to 39.0+/-3.5% and 47.0+/-5.1% at 2 and 12 h after the occlusion, respectively (p<0.01). The geometric center was 5.6+/-0.4 and 5.2+/-0.9 at 2 and 12 h after sham operation, respectively, and MCAO significantly decreased geometric center to 2.9+/-0.8 and 3.0+/-0.3 at 2 and 12 h after the occlusion, respectively (p<0.01). In control animals, injection of atropine decreased intestinal transit to 35.9+/-5.2%, and injection of glutamate NMDA receptor antagonist, MK-801, decreased intestinal transit to 28.8+/-9.5%. Pretreatment with MK-801, a glutamate NMDA receptor antagonist, in the MCAO group decreased intestinal transit to 11.8+/-3.2%, which was significantly decreased compared to MCAO group (p<0.01). MCAO markedly increased the expression of c-Fos protein in the insular cortex and cingulate cortex ipsilateral to the occlusion 2 h after MCAO, and pretreatment with MK-801 produced marked reduction of c-Fos protein expression compared to MCAO group (p<0.01). These results suggest that modulation of gastrointestinal motility after MCAO might be partially mediated through a glutamate NMDA receptor system.


Subject(s)
Animals , Rats , Atropine , Dizocilpine Maleate , Gastrointestinal Motility , Glutamic Acid , Gyrus Cinguli , Infarction, Middle Cerebral Artery , Middle Cerebral Artery , N-Methylaspartate , Neurotransmitter Agents , Salicylamides
19.
The Korean Journal of Physiology and Pharmacology ; : 213-221, 2010.
Article in English | WPRIM | ID: wpr-727797

ABSTRACT

The hypothalamic-pituitary-adrenal (HPA) axis is the primary endocrine system to respond to stress. The HPA axis may be affected by increased level of corticotrophin-releasing factors under chronic stress and by chronic administration of monosodium glutamate (MSG). The purpose of this study was to investigate whether chronic MSG administration aggravates chronic variable stress (CVS)-induced behavioral and hormonal changes. Twenty-four adult male Sprague-Dawley rats, weighing 200~220 g, were divided into 4 groups as follows: water administration (CON), MSG (3 g/kg) administration (MSG), CVS, and CVS with MSG (3 g/kg) administration (CVS+MSG). In addition, for the purpose of comparing the effect on plasma corticosterone levels between chronic stress and daily care or acute stress, 2 groups were added at the end of the experiment; the 2 new groups were as follows: naive mice (n=7) and mice exposed to restraint stress for 2 h just before decapitation (A-Str, n=7). In an open field test performed after the experiment, the CVS+MSG group significant decrease in activity. The increase in relative adrenal weights in the CVS and CVS+MSG group was significantly greater than those in the CON and/or MSG groups. In spite of the increase in the relative adrenal weight, there was a significant decrease in the plasma corticosterone levels in the CVS+MSG group as compared to all other groups, except the naive group. These results suggest that impaired HPA axis function as well as the decrease in the behavioral activity in adult rats can be induced by chronic MSG administration under CVS rather than CVS alone.


Subject(s)
Adult , Animals , Humans , Male , Mice , Rats , Axis, Cervical Vertebra , Corticosterone , Decapitation , Endocrine System , Plasma , Rats, Sprague-Dawley , Sodium Glutamate , Water , Weights and Measures
20.
Korean Circulation Journal ; : 359-366, 2009.
Article in English | WPRIM | ID: wpr-151436

ABSTRACT

BACKGROUND AND OBJECTIVES: Reactive oxygen species (ROS) and mitogen-activated protein (MAP) kinase play an important role in the development of myocardial reperfusion injury. In this study, we examined whether treatment with alpha-lipoic acid (ALA) before reperfusion could prevent myocardial reperfusion injury in vivo. Materials and Methods: Sprague-Dawley rats were subjected to a 45-minute left anterior descending coronary artery ligation followed by 45- or 10-minute reperfusion. ALA was administered 10 minutes prior to reperfusion. The infarct size ratio of the infarct area to the ischemic area at risk, was measured based on 10, 25, 50, and 100 mg/kg of ALA, with propidium iodide (PI) fluorescence. Apoptosis was evaluated by TdT-mediated dUDP nick end labeling (TUNEL) staining. The generation of intracellular ROS was evaluated using the fluorogenic probe, dichlorodihydrofluorescein diacetate (CM-H2DCFDA). Western blot analysis was performed for MAP kinase (pERK 1/2 and pJNK 1/2) activity. RESULTS: The infarct size, according to ALA dose, was significantly suppressed 29.1% with ALA 25 mg/kg (p<0.0001), 41.5% with 50 mg/kg (p<0.05), and 41.4% with 100 mg/kg (p<0.05) compared to the controls (54.3%). However, the results were not significantly different with 47.2% of the ALA 10 mg/kg (p=0.192). A few apoptotic nucleoli were detected in the ALA 25 mg/kg group, but were frequently detected in the control group. The ROS generation was significantly suppressed (p<0.0001), the activity of pERK 1/2 was significantly increased (p<0.05) and the activity of pJNK 1/2 was significantly decreased (p<0.05) in the ALA 25 mg/kg group compared to the controls. CONCLUSION: The results of this study suggested that adequate doses of ALA before reperfusion was effective for the prevention of myocardial reperfusion injury in vivo. This cardioprotective activity of ALA might be associated with an anti-apoptotic effect of ALA via suppression of ROS generation, increase of pERK 1/2 and decrease of pJNK 1/2 activity.


Subject(s)
Apoptosis , Blotting, Western , Coronary Vessels , Fluorescence , Ligation , Myocardial Reperfusion , Myocardial Reperfusion Injury , Phosphotransferases , Propidium , Protein Kinases , Rats, Sprague-Dawley , Reactive Oxygen Species , Reperfusion , Thioctic Acid
SELECTION OF CITATIONS
SEARCH DETAIL